Package: fuzzyforest (via r-universe)

October 17, 2024

Title Fuzzy Forests

Version 1.0.8

Description Fuzzy forests, a new algorithm based on random forests, is designed to reduce the bias seen in random forest feature selection caused by the presence of correlated features. Fuzzy forests uses recursive feature elimination random forests to select features from separate blocks of correlated features where the correlation within each block of features is high and the correlation between blocks of features is low. One final random forest is fit using the surviving features. This package fits random forests using the 'randomForest' package and allows for easy use of 'WGCNA' to split features into distinct blocks. See D. Conn, Ngun, T., C. Ramirez, and G. Li (2019) <doi:10.18637/jss.v091.i09> for further details.

Depends R (>= 3.2.1)

License GPL-3

LazyData true

Imports randomForest, foreach, doParallel, parallel, ggplot2, mvtnorm

Suggests WGCNA, testthat

RoxygenNote 6.1.1

NeedsCompilation no

Author Daniel Conn [aut, cre], Tuck Ngun [aut], Christina M. Ramirez [aut]

Maintainer Daniel Conn <djconn17@gmail.com>

Date/Publication 2020-03-25 16:40:16 UTC

Repository https://daniel-conn17.r-universe.dev

RemoteUrl https://github.com/cran/fuzzyforest

RemoteRef HEAD

RemoteSha d8ddfad6939c17402f4872c0eb708931f7fc03a9

2 ctg

Contents

ctg	Cardiotocography Data Set	
Index		22
	WGCNA_control	21
	wff.formula	
	wff	
	select_RF	
	select_control	
	screen_control	
	print.fuzzy_forest	
	predict.fuzzy_forest	
	multi_class_lr	
	modplot	
	Liver_Expr	
	iterative_RF	
	fuzzy_forest	
	fuzzyforest	
	ff.formula	
	ff	
	example_ff	
	ctg	

Description

A data set containing measurements of fetal heart rate and uterine contraction from cardiotocograms. This data set was obtained from the [UCI machine learning repository](https://archive.ics.uci.edu/ml/index.html) For our examples we extract a random sub sample of 100 observations.

Usage

data(ctg)

Format

A data frame with 100 rows and 21.

example_ff 3

|--|

Description

An example of a fuzzy_forest object derived from fitting fuzzy forests on the ctg data set. The source code used to produce example_ff can be seen in the vignette "fuzzyforest_introduction".

Format

.RData

ff

Fuzzy forests algorithm

Description

Fits the fuzzy forests algorithm. Note that a formula interface for fuzzy forests also exists: ff.formula.

Usage

```
## Default S3 method:
ff(X, y, Z = NULL, module_membership,
    screen_params = screen_control(min_ntree = 500),
    select_params = select_control(min_ntree = 500), final_ntree = 5000,
    num_processors = 1, nodesize, test_features = NULL, test_y = NULL,
    ...)

ff(X, ...)
```

Arguments

Х	A data.frame. Each column corresponds to a feature vectors.
У	Response vector. For classification, \boldsymbol{y} should be a factor. For regression, \boldsymbol{y} should be numeric.
Z	A data.frame. Additional features that are not to be screened out at the screening step.
module_membersh	rip
	A character vector giving the module membership of each feature.
screen_params	Parameters for screening step of fuzzy forests. See <pre>screen_control</pre> for details. <pre>screen_params</pre> is an object of type <pre>screen_control</pre> .
select_params	Parameters for selection step of fuzzy forests. See select_control for details.

select_params is an object of type select_control.

4 ff

final_ntree Number of trees grown in the final random forest. This random forest contains

all selected features.

num_processors Number of processors used to fit random forests.

nodesize Minimum terminal nodesize. 1 if classification. 5 if regression. If the sample

size is very large, the trees will be grown extremely deep. This may lead to issues with memory usage and may lead to significant increases in the time it takes the algorithm to run. In this case, it may be useful to increase nodesize.

test_features A data.frame containing features from a test set. The data.frame should contain

the features in both X and Z.

test_y The responses for the test set.

... Additional arguments currently not used.

Value

An object of type fuzzy_forest. This object is a list containing useful output of fuzzy forests. In particular it contains a data.frame with a list of selected the features. It also includes a random forest fit using the selected features.

Note

This work was partially funded by NSF IIS 1251151 and AMFAR 8721SC.

References

Conn, D., Ngun, T., Ramirez C.M., Li, G. (2019). "Fuzzy Forests: Extending Random Forest Feature Selection for Correlated, High-Dimensional Data." *Journal of Statistical Software*, **91**(9). doi: 10.18637/jss.v091.i09

Breiman, L. (2001). "Random Forests." *Machine Learning*, **45**(1), 5-32. doi: 10.1023/A:1010933404324

Zhang, B. and Horvath, S. (2005). "A General Framework for Weighted Gene Co-Expression Network Analysis." *Statistical Applications in Genetics and Molecular Biology*, **4**(1). doi: 10.2202/15446115.1128

See Also

```
ff.formula, print.fuzzy_forest, predict.fuzzy_forest, modplot
```

```
#ff requires that the partition of the covariates be previously determined.
#ff is also handy if the user wants to test out multiple settings of WGCNA
#prior to running fuzzy forests.

library(mvtnorm)
gen_mod <- function(n, p, corr) {
   sigma <- matrix(corr, nrow=p, ncol=p)
   diag(sigma) <- 1
   X <- rmvnorm(n, sigma=sigma)
   return(X)</pre>
```

ff 5

```
}
gen_X <- function(n, mod_sizes, corr){</pre>
  m <- length(mod_sizes)</pre>
  X_list <- vector("list", length = m)</pre>
  for(i in 1:m){
    X_list[[i]] <- gen_mod(n, mod_sizes[i], corr[i])</pre>
  X <- do.call("cbind", X_list)</pre>
  return(X)
}
err_sd <- .5
n <- 500
mod_sizes <- rep(25, 4)</pre>
corr <- rep(.8, 4)</pre>
X <- gen_X(n, mod_sizes, corr)</pre>
beta <- rep(0, 100)
beta[c(1:4, 76:79)] <- 5
y <- X%*%beta + rnorm(n, sd=err_sd)</pre>
X <- as.data.frame(X)</pre>
Xtest <- gen_X(n, mod_sizes, corr)</pre>
ytest <- Xtest%*%beta + rnorm(n, sd=err_sd)</pre>
Xtest <- as.data.frame(Xtest)</pre>
cdist <- as.dist(1 - cor(X))</pre>
hclust_fit <- hclust(cdist, method="ward.D")</pre>
groups <- cutree(hclust_fit, k=4)</pre>
screen_c <- screen_control(keep_fraction = .25,</pre>
                              ntree_factor = 1,
                              min_ntree = 250)
select_c <- select_control(number_selected = 10,</pre>
                              ntree_factor = 1,
                              min_ntree = 250)
ff_fit <- ff(X, y, module_membership = groups,</pre>
              screen_params = screen_c,
              select_params = select_c,
              final_ntree = 250)
#extract variable importance rankings
vims <- ff_fit$feature_list</pre>
#plot results
modplot(ff_fit)
#obtain predicted values for a new test set
preds <- predict(ff_fit, new_data=Xtest)</pre>
#estimate test set error
test_err <- sqrt(sum((ytest - preds)^2)/n)</pre>
```

6 ff.formula

ff.formula

Fuzzy forests algorithm

Description

Implements formula interface for ff.

Usage

```
## S3 method for class 'formula'
ff(formula, data = NULL, module_membership, ...)
```

Arguments

```
formula Formula object.

data data used in the analysis.

module_membership

A character vector giving the module membership of each feature.

... Additional arguments
```

Value

An object of type fuzzy_forest. This object is a list containing useful output of fuzzy forests. In particular it contains a data.frame with list of selected features. It also includes the random forest fit using the selected features.

Note

See ff for additional arguments. Note that the matrix, Z, of features that do not go through the screening step must specified separately from the formula. test_features and test_y are not supported in formula interface. As in the randomForest package, for large data sets the formula interface may be substantially slower.

This work was partially funded by NSF IIS 1251151 and AMFAR 8721SC.

References

Conn, D., Ngun, T., Ramirez C.M., Li, G. (2019). "Fuzzy Forests: Extending Random Forest Feature Selection for Correlated, High-Dimensional Data." *Journal of Statistical Software*, **91**(9). doi: 10.18637/jss.v091.i09

Breiman, L. (2001). "Random Forests." *Machine Learning*, **45**(1), 5-32. doi: 10.1023/A:1010933404324 Zhang, B. and Horvath, S. (2005). "A General Framework for Weighted Gene Co-Expression Network Analysis." *Statistical Applications in Genetics and Molecular Biology*, **4**(1). doi: 10.2202/15446115.1128

See Also

```
ff, print.fuzzy_forest, predict.fuzzy_forest, modplot
```

ff.formula 7

```
#ff requires that the partition of the covariates be previously determined.
#ff is also handy if the user wants to test out multiple settings of WGCNA
#prior to running fuzzy forests.
library(mvtnorm)
gen_mod <- function(n, p, corr) {</pre>
  sigma <- matrix(corr, nrow=p, ncol=p)</pre>
  diag(sigma) <- 1
  X <- rmvnorm(n, sigma=sigma)</pre>
  return(X)
}
gen_X <- function(n, mod_sizes, corr){</pre>
  m <- length(mod_sizes)</pre>
  X_list <- vector("list", length = m)</pre>
  for(i in 1:m){
    X_list[[i]] <- gen_mod(n, mod_sizes[i], corr[i])</pre>
  X <- do.call("cbind", X_list)</pre>
  return(X)
}
err_sd <- .5
n <- 500
mod_sizes <- rep(25, 4)</pre>
corr \leftarrow rep(.8, 4)
X <- gen_X(n, mod_sizes, corr)</pre>
beta <- rep(0, 100)
beta[c(1:4, 76:79)] <- 5
y <- X%*%beta + rnorm(n, sd=err_sd)
X <- as.data.frame(X)</pre>
dat <- as.data.frame(cbind(y, X))</pre>
Xtest <- gen_X(n, mod_sizes, corr)</pre>
ytest <- Xtest%*%beta + rnorm(n, sd=err_sd)</pre>
Xtest <- as.data.frame(Xtest)</pre>
cdist <- as.dist(1 - cor(X))</pre>
hclust_fit <- hclust(cdist, method="ward.D")</pre>
groups <- cutree(hclust_fit, k=4)</pre>
screen_c <- screen_control(keep_fraction = .25,</pre>
                              ntree_factor = 1,
                              min_ntree = 250)
select_c <- select_control(number_selected = 10,</pre>
                              ntree_factor = 1,
                              min_ntree = 250)
ff_fit \leftarrow ff(y \sim ., data=dat,
              module_membership = groups,
              screen_params = screen_c,
              select_params = select_c,
```

8 fuzzy_forest

```
final_ntree = 250)
#extract variable importance rankings
vims <- ff_fit$feature_list

#plot results
modplot(ff_fit)

#obtain predicted values for a new test set
preds <- predict(ff_fit, new_data=Xtest)

#estimate test set error
test_err <- sqrt(sum((ytest - preds)^2)/n)</pre>
```

fuzzyforest

fuzzyforest: an implementation of the fuzzy forest algorithm in R.

Description

This package implements fuzzy forests and integrates the fuzzy forests algorithm with the package, WGCNA.

Note

This work was partially funded by NSF IIS 1251151 and AMFAR 8721SC.

fuzzy_forest

Fuzzy Forest Object

Description

Fuzzy forests returns an object of type fuzzyforest.

Usage

```
fuzzy_forest(feature_list, final_rf, module_membership,
  WGCNA_object = NULL, survivor_list, selection_list)
```

Arguments

feature_list List of selected features along with variable importance measures.

final_rf A final random forest fit using the features selected by fuzzy forests.

module_membership

Module membership of each feature.

WGCNA_object If applicable, output of WGCNA analysis.

survivor_list List of features that have survived screening step.

selection_list List of features retained at each iteration of selection step.

iterative_RF

Value

An object of type fuzzy_forest.

Note

This work was partially funded by NSF IIS 1251151 and AMFAR 8721SC.

iterative_RF	Fits iterative random forest algorithm.	

Description

Fits iterative random forest algorithm. Returns data.frame with variable importances and top rated features. For now this is an internal function that I've used to explore how recursive feature elimination works in simulations. It may be exported at a later time.

Usage

```
iterative_RF(X, y, drop_fraction, keep_fraction, mtry_factor,
  ntree_factor = 10, min_ntree = 5000, num_processors = 1, nodesize)
```

Arguments

Χ	A data.frame. Each column corresponds to a feature vectors.
у	Response vector.
drop_fraction	A number between 0 and 1. Percentage of features dropped at each iteration.
keep_fraction	A number between 0 and 1. Proportion features from each module to retain at screening step.
mtry_factor	A positive number. Mtry for each random forest is set to $\operatorname{ceiling}(\sqrt{p}\operatorname{mtry_factor})$ where p is the current number of features.
ntree_factor	A number greater than 1. ntree for each random is ntree_factor times the number of features. For each random forest, ntree is set to max(min_ntree, ntree_factor*p).
min_ntree	Minimum number of trees grown in each random forest.
num_processors	Number of processors used to fit random forests.
nodesize	Minimum nodesize.

Value

A data.frame with the top ranked features.

Note

This work was partially funded by NSF IIS 1251151 and AMFAR 8721SC.

10 modplot

Liver_Expr

Liver Expression Data from Female Mice

Description

A data set containing gene expression levels in liver tissue from female mice. This data set is a subset of the liver expression data set from the WGCNA tutorial https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/. The tutorial contains further information about the data set as well as extensive examples of WGCNA.

Usage

```
data(Liver_Expr)
```

Format

A data frame with 66 rows and 3601

Details

- The first column contains weight (g) for the 66 mice.
- The other 3600 columns contain the liver expression levels.

modplot

Plots relative importance of modules.

Description

The plot is designed to depict the size of each module and what percentage of selected features fall into each module. In particular, it is easy to determine which module is over-represented in the group of selected features.

Usage

```
modplot(object, main = NULL, xlab = NULL, ylab = NULL,
  module_labels = NULL)
```

Arguments

object A fuzzy_forest object.

main Title of plot.

xlab Title for the x axis. ylab Title for the y axis.

module_labels Labels for the modules. A data.frame or character matrix with first column

giving the current name of module and second column giving the assigned name

of each module.

multi_class_lr 11

Note

This work was partially funded by NSF IIS 1251151 and AMFAR 8721SC.

See Also

```
ff, wff, ff.formula, wff.formula
```

multi_class_lr

Multinomial Logistic Regression

Description

Function to generate multi-class data from a multinomial logistic regression. Assumes there are 5 classes. Only supports two modules for now. Currently this function is used for testing.

Usage

```
multi_class_lr(n, mod1_size = 10, mod2_size = 10, rho = 0.8,
  beta = NULL)
```

Arguments

n Sample size.

mod1_size Size of first module.

mod2_size Size of second module.

rho Correlation of covariates.

beta A matrix of parameters.

Value

list with design matrix X, outcome y, and beta.

Note

This work was partially funded by NSF IIS 1251151 and AMFAR 8721SC.

12 predict.fuzzy_forest

Description

Predict method for fuzzy_forest object. Obtains predictions from fuzzy forest algorithm.

Usage

```
## S3 method for class 'fuzzy_forest'
predict(object, new_data, ...)
```

Arguments

object A fuzzy_forest object.

new_data A matrix or data.frame containing new_data. Pay close attention to ensure fea-

ture names match between training set and test set data.frame.

. . . Additional arguments not in use.

Value

A vector of predictions

Note

This work was partially funded by NSF IIS 1251151 and AMFAR 8721SC.

See Also

```
ff, wff, ff.formula, wff.formula
```

```
library(mvtnorm)
gen_mod <- function(n, p, corr) {
    sigma <- matrix(corr, nrow=p, ncol=p)
    diag(sigma) <- 1
    X <- rmvnorm(n, sigma=sigma)
    return(X)
}

gen_X <- function(n, mod_sizes, corr){
    m <- length(mod_sizes)
    X_list <- vector("list", length = m)
    for(i in 1:m){
        X_list[[i]] <- gen_mod(n, mod_sizes[i], corr[i])
    }
}</pre>
```

print.fuzzy_forest 13

```
X <- do.call("cbind", X_list)</pre>
  return(X)
}
err_sd <- .5
n <- 500
mod_sizes <- rep(25, 4)</pre>
corr <- rep(.8, 4)</pre>
X <- gen_X(n, mod_sizes, corr)</pre>
beta <- rep(0, 100)
beta[c(1:4, 76:79)] <- 5
y <- X%*%beta + rnorm(n, sd=err_sd)
X <- as.data.frame(X)</pre>
Xtest <- gen_X(n, mod_sizes, corr)</pre>
ytest <- Xtest%*%beta + rnorm(n, sd=err_sd)</pre>
Xtest <- as.data.frame(Xtest)</pre>
cdist <- as.dist(1 - cor(X))</pre>
hclust_fit <- hclust(cdist, method="ward.D")</pre>
groups <- cutree(hclust_fit, k=4)</pre>
screen_c <- screen_control(keep_fraction = .25,</pre>
                              ntree_factor = 1,
                              min_ntree = 250)
select_c <- select_control(number_selected = 10,</pre>
                              ntree_factor = 1,
                              min_ntree = 250)
ff_fit <- ff(X, y, module_membership = groups,</pre>
              screen_params = screen_c,
              select_params = select_c,
              final_ntree = 250)
#extract variable importance rankings
vims <- ff_fit$feature_list</pre>
#plot results
modplot(ff_fit)
#obtain predicted values for a new test set
preds <- predict(ff_fit, new_data=Xtest)</pre>
#estimate test set error
test_err <- sqrt(sum((ytest - preds)^2)/n)</pre>
```

print.fuzzy_forest

Print fuzzy_forest object. Prints output from fuzzy forests algorithm.

Description

Print fuzzy_forest object. Prints output from fuzzy forests algorithm.

14 screen_control

Usage

```
## S3 method for class 'fuzzy_forest'
print(x, ...)
```

Arguments

x A fuzzy_forest object.

... Additional arguments not in use.

Value

data.frame with list of selected features and variable importance measures.

Note

This work was partially funded by NSF IIS 1251151 and AMFAR 8721SC.

screen_control

Set Parameters for Screening Step of Fuzzy Forests

Description

Creates screen_control object for controlling how feature selection will be carried out on each module.

Usage

```
screen_control(drop_fraction = 0.25, keep_fraction = 0.05,
    mtry_factor = 1, min_ntree = 500, ntree_factor = 1)
```

Arguments

drop_fraction A number between 0 and 1. Percentage of features dropped at each iteration.

keep_fraction A number between 0 and 1. Proportion of features from each module that are

retained from screening step.

mtry_factor In the case of regression, mtry is set to ceiling($\sqrt(p)$ *mtry_factor). In the

case of classification, mtry is set to $ceiling((p/3)*mtry_factor)$. If either of

these numbers is greater than p, mtry is set to p.

min_ntree Minimum number of trees grown in each random forest.

ntree_factor A number greater than 1. ntree for each random forest is ntree_factor times

the number of features. For each random forest, ntree is set to max(min_ntree,

 $ntree_factor*p).$

Value

An object of type screen_control.

select_control 15

Note

This work was partially funded by NSF IIS 1251151 and AMFAR 8721SC.

References

Conn, D., Ngun, T., Ramirez C.M., Li, G. (2019). "Fuzzy Forests: Extending Random Forest Feature Selection for Correlated, High-Dimensional Data." *Journal of Statistical Software*, **91**(9). doi: 10.18637/jss.v091.i09

Examples

select_control

Set Parameters for Selection Step of Fuzzy Forests

Description

Creates selection_control object for controlling how feature selection will be carried out after features from different modules have been combined.

Usage

```
select_control(drop_fraction = 0.25, number_selected = 5,
   mtry_factor = 1, min_ntree = 500, ntree_factor = 1)
```

Arguments

drop_fraction A number between 0 and 1. Percentage of features dropped at each iteration. number_selected

A positive number. Number of features that will be selected by fuzzyforests.

mtry_factor In the case of regression, mtry is set to ceiling($\sqrt(p)$ *mtry_factor). In the

case of classification, mtry is set to ceiling((p/3)*mtry_factor). If either of

these numbers is greater than p, mtry is set to p.

min_ntree Minimum number of trees grown in each random forest.

ntree_factor A number greater than 1. ntree for each random forest is ntree_factor times

the number of features. For each random forest, ntree is set to max(min_ntree,

ntree_factor*p).

16 select_RF

Value

An object of type selection_control.

Note

This work was partially funded by NSF IIS 1251151 and AMFAR 8721SC.

References

Conn, D., Ngun, T., Ramirez C.M., Li, G. (2019). "Fuzzy Forests: Extending Random Forest Feature Selection for Correlated, High-Dimensional Data." *Journal of Statistical Software*, **91**(9). doi: 10.18637/jss.v091.i09

Examples

select_RF

Carries out the selection step of fuzzyforest algorithm.

Description

Carries out the selection step of fuzzyforest algorithm. Returns data.frame with variable importances and top rated features.

Usage

```
select_RF(X, y, drop_fraction, number_selected, mtry_factor, ntree_factor,
    min_ntree, num_processors, nodesize)
```

Arguments

X A data.frame. Each column corresponds to a feature vectors. Could include additional covariates not a part of the original modules.

y Response vector.

 $\label{lem:condition} \mbox{ drop_fraction } \mbox{ A number between 0 and 1. Percentage of features dropped at each iteration.} \\ \mbox{ number_selected}$

Number of features selected by fuzzyforest.

wff 17

mtry_factor In the case of regression, mtry is set to ceiling($\sqrt(p)$ *mtry_factor). In the case of classification, mtry is set to ceiling((p/3)*mtry_factor). If either of these numbers is greater than p, mtry is set to p.

ntree_factor A number greater than 1. ntree for each random is ntree_factor times the number of features. For each random forest, ntree is set to max(min_ntree, ntree_factor*p).

min_ntree Minimum number of trees grown in each random forest.

num_processors Number of processors used to fit random forests.

nodesize Minimum nodesize

Value

A data.frame with the top ranked features.

Note

This work was partially funded by NSF IIS 1251151 and AMFAR 8721SC.

wff

WGCNA based fuzzy forest algorithm

Description

Fits fuzzy forests using WGCNA to cluster features into distinct modules. Requires installation of WGCNA package. Note that a formula interface for WGCNA based fuzzy forests also exists: wff.formula.

Usage

```
## Default S3 method:
wff(X, y, Z = NULL,
    WGCNA_params = WGCNA_control(power = 6),
    screen_params = screen_control(min_ntree = 500),
    select_params = select_control(min_ntree = 500), final_ntree = 5000,
    num_processors = 1, nodesize, test_features = NULL, test_y = NULL,
    ...)
wff(X, ...)
```

Arguments

Χ	A data frame. Each column corresponds to a feature vector. WGCNA will be
	used to cluster the features in X. As a result, the features should be all be nu-
	meric. Non-numeric features may be input via Z.
у	Response vector. For classification, y should be a factor. For regression, y

should be numeric.

18 wff

Z	Additional features that are not to be screened out at the screening step. WGCNA is not carried out on features in Z.
WGCNA_params	Parameters for WGCNA. See blockwiseModules function from WGCNA and WGCNA_control for details. WGCNA_params is an object of type WGCNA_control.
screen_params	Parameters for screening step of fuzzy forests. See screen_control for details. screen_params is an object of type screen_control.
select_params	Parameters for selection step of fuzzy forests. See select_control for details. select_params is an object of type select_control.
final_ntree	Number of trees grown in the final random forest. This random forest contains all selected features.
num_processors	Number of processors used to fit random forests.
	•
nodesize	Minimum terminal nodesize. 1 if classification. 5 if regression. If the sample size is very large, the trees will be grown extremely deep. This may lead to issues with memory usage and may lead to significant increases in the time it takes the algorithm to run. In this case, it may be useful to increase nodesize.
	Minimum terminal nodesize. 1 if classification. 5 if regression. If the sample size is very large, the trees will be grown extremely deep. This may lead to issues with memory usage and may lead to significant increases in the time it
nodesize	Minimum terminal nodesize. 1 if classification. 5 if regression. If the sample size is very large, the trees will be grown extremely deep. This may lead to issues with memory usage and may lead to significant increases in the time it takes the algorithm to run. In this case, it may be useful to increase nodesize. A data frame containing features from a test set. The data frame should contain

Value

An object of type fuzzy_forest. This object is a list containing useful output of fuzzy forests. In particular it contains a data.frame with list of selected features. It also includes the random forest fit using the selected features.

Note

This work was partially funded by NSF IIS 1251151 and AMFAR 8721SC.

References

Conn, D., Ngun, T., Ramirez C.M., Li, G. (2019). "Fuzzy Forests: Extending Random Forest Feature Selection for Correlated, High-Dimensional Data." *Journal of Statistical Software*, **91**(9). doi: 10.18637/jss.v091.i09

Breiman, L. (2001). "Random Forests." *Machine Learning*, **45**(1), 5-32. doi: 10.1023/A:1010933404324

Zhang, B. and Horvath, S. (2005). "A General Framework for Weighted Gene Co-Expression Network Analysis." *Statistical Applications in Genetics and Molecular Biology*, **4**(1). doi: 10.2202/15446115.1128

See Also

wff.formula, print.fuzzy_forest, predict.fuzzy_forest, modplot

wff.formula 19

Examples

```
data(ctg)
y <- ctg$NSP
X <- ctg[, 2:22]
WGCNA_params <- WGCNA_control(p = 6, minModuleSize = 1, nThreads = 1)</pre>
mtry_factor <- 1; min_ntree <- 500; drop_fraction <- .5; ntree_factor <- 1</pre>
screen_params <- screen_control(drop_fraction = drop_fraction,</pre>
                                 keep_fraction = .25, min_ntree = min_ntree,
                                 ntree_factor = ntree_factor,
                                 mtry_factor = mtry_factor)
select_params <- select_control(drop_fraction = drop_fraction,</pre>
                                 number_selected = 5,
                                 min_ntree = min_ntree,
                                 ntree_factor = ntree_factor,
                                 mtry_factor = mtry_factor)
library(WGCNA)
wff_fit <- wff(X, y, WGCNA_params = WGCNA_params,</pre>
                 screen_params = screen_params,
                 select_params = select_params,
                 final_ntree = 500)
#extract variable importance rankings
vims <- wff_fit$feature_list</pre>
#plot results
modplot(wff_fit)
```

wff.formula

WGCNA based fuzzy forest algorithm

Description

Implements formula interface for wff.

Usage

```
## S3 method for class 'formula'
wff(formula, data = NULL, ...)
```

Arguments

formula Formula object.
data data used in the analysis.
... Additional arguments

20 wff.formula

Value

An object of type fuzzy_forest. This object is a list containing useful output of fuzzy forests. In particular it contains a data.frame with list of selected features. It also includes the random forest fit using the selected features.

Note

See ff for additional arguments. Note that the matrix, Z, of features that do not go through the screening step must specified separately from the formula. test_features and test_y are not supported in formula interface. As in the randomForest package, for large data sets the formula interface may be substantially slower.

This work was partially funded by NSF IIS 1251151 and AMFAR 8721SC.

See Also

```
wff, print.fuzzy_forest, predict.fuzzy_forest, modplot
```

```
data(ctg)
y <- ctg$NSP
X <- ctg[, 2:22]
dat <- as.data.frame(cbind(y, X))</pre>
WGCNA_params <- WGCNA_control(p = 6, minModuleSize = 1, nThreads = 1)</pre>
mtry_factor <- 1; min_ntree <- 500; drop_fraction <- .5; ntree_factor <- 1</pre>
screen_params <- screen_control(drop_fraction = drop_fraction,</pre>
                                  keep_fraction = .25, min_ntree = min_ntree,
                                  ntree_factor = ntree_factor,
                                  mtry_factor = mtry_factor)
select_params <- select_control(drop_fraction = drop_fraction,</pre>
                                  number_selected = 5,
                                  min_ntree = min_ntree,
                                  ntree_factor = ntree_factor,
                                  mtry_factor = mtry_factor)
library(WGCNA)
wff_fit <- wff(y ~ ., data=dat,
                WGCNA_params = WGCNA_params,
                screen_params = screen_params,
                select_params = select_params,
                final_ntree = 500)
#extract variable importance rankings
vims <- wff_fit$feature_list</pre>
#plot results
modplot(wff_fit)
```

WGCNA_control 21

WGCNA	control

Set Parameters for WGCNA Step of Fuzzy Forests

Description

Creates WGCNA_control object for controlling WGCNA will be carried out.

Usage

```
WGCNA_control(power = 6, ...)
```

Arguments

power Power of adjacency function.

... Additional arguments. See blockwiseModules from the WGCNA package for

details.

Value

An object of type WGCNA_control.

Note

This work was partially funded by NSF IIS 1251151.

References

Conn, D., Ngun, T., Ramirez C.M., Li, G. (2019). "Fuzzy Forests: Extending Random Forest Feature Selection for Correlated, High-Dimensional Data." *Journal of Statistical Software*, **91**(9). doi: 10.18637/jss.v091.i09

Zhang, B. and Horvath, S. (2005). "A General Framework for Weighted Gene Co-Expression Network Analysis." *Statistical Applications in Genetics and Molecular Biology*, **4**(1). doi: 10.2202/15446115.1128

```
\label{eq:wgcnaparams} $$ \ensuremath{\mathsf{WGCNA\_control}(p=7, minModuleSize=30, TOMType = "unsigned", reassignThreshold = 0, mergeCutHeight = 0.25, numericLabels = TRUE, pamRespectsDendro = FALSE) $$
```

Index

```
* R
    example_ff, 3
* datasets
    ctg, 2
    Liver_Expr, 10
* object
    example_ff, 3
ctg, 2
example_ff, 3
ff, 3, 6, 11, 12, 20
ff.formula, 3, 4, 6, 11, 12
fuzzy_forest, 4, 6, 8, 18, 20
fuzzyforest, 8
{\tt fuzzy forest-package}\ ({\tt fuzzy forest}),\, 8
iterative_RF, 9
Liver_Expr, 10
modplot, 4, 6, 10, 18, 20
multi\_class\_lr, 11
predict.fuzzy_forest, 4, 6, 12, 18, 20
print.fuzzy_forest, 4, 6, 13, 18, 20
screen_control, 3, 14, 18
select_control, 3, 15, 18
select_RF, 16
wff, 11, 12, 17, 19, 20
wff.formula, 11, 12, 17, 18, 19
WGCNA_control, 18, 21
```